NATURAL PRODUCT COMMUNICATIONS

An International Journal for Communications and Reviews Covering all Aspects of Natural Products Research

ISSN 1934-578X (printed); ISSN 1555-9475 (online)
www.naturalproduct.us
EDITORS

PROFESSOR GERALD BLUNDEN
The School of Pharmacy & Biomedical Sciences,
University of Portsmouth,
Portsmouth, PO1 2DT U.K.
aga64@dsl.pipex.com

PROFESSOR ALESSANDRA BRACA
Dipartimento di Chimica Bioorganicae Biofarmacia,
Universita di Pisa,
via Bonanno 33, 56126 Pisa, Italy
braca@farm.unipi.it

PROFESSOR DEAN GUO
State Key Laboratory of Natural and Biomimetic Drugs,
School of Pharmaceutical Sciences,
Peking University,
Beijing 10087, China
gda5958@163.com

PROFESSOR J. ALBERTO MARCO
Departamento de Quimica Organica,
Universitat de Valenica,
E-46100 Burjasot, Valencia, Spain
alberto.marcos@uv.es

PROFESSOR YOSHIHIRO MIMAKI
School of Pharmacy,
University of Toyama
Toyama 930-0194, Japan
mimakiy@ps.toyaku.ac.jp

PROFESSOR STEPHEN G. PYNE
Department of Chemistry
University of Wollongong
Wollongong, New South Wales, 2522, Australia
spyne@uow.edu.au

PROFESSOR MANFRED G. REINECKE
Department of Chemistry,
Texas Christian University,
Fort Worth, TX 76129, USA
m.reinecke@tcu.edu

PROFESSOR WILLIAM N. SETZER
Department of Chemistry
The University of Alabama in Huntsville
Huntsville, AL 35809, USA
wssetzer@chemistry.uah.edu

PROFESSOR YASUHIRO TEZUKA
Institute of Natural Medicine
Institute of Natural Medicine, University of Toyama,
2630-Sugitani, Toyama 930-0194, Japan
tezuka@inn.u-toyama.ac.jp

ADVISORY BOARD

Prof. Vikas Uddin Ahmad
Karachi, Pakistan

Prof. Gyovind M. Andersen
Bergen, Norway

Prof. Giovanni Appendino
Novara, Italy

Prof. Yoshinori Asakawa
Tokushima, Japan

Prof. Maurizio Bruno
Palermo, Italy

Prof. Carlos Cerda-Garcia-Rojas
Mexico city, Mexico

Prof. Josep Coll
Barcelona, Spain

Prof. Geoffrey Cordell
Chicago, IL, USA

Prof. Samuel Danishefsky
New York, NY, USA

Dr. Biswanath Das
Hyderabad, India

Prof. A.A. Leslie Gunatilaka
Tucson, AZ, USA

Prof. Stephen Hanessian
Montreal, Canada

Prof. Michael Heinrich
London, UK

Prof. Kurt Hostettmann
Lausanne, Switzerland

Prof. Martin A. Iglesias Arteaga
Mexico, D. F., Mexico

Prof. Jerzy Jarczewski
Copenhagen, Denmark

Prof. Teodoro Kaufman
Rosario, Argentina

Prof. Norbert De Kimpe
Gent, Belgium

Prof. Hartmut Laatsch
Gottingen, Germany

Prof. Marie Lacaille-Dubois
Dijon, France

Prof. Shoey-Sheng Lee
Taipei, Taiwan

Prof. Francisco Macias
Cadiz, Spain

Prof. Anita Marsaisi
Campinas, Brazil

Prof. Imre Mathe
Szeged, Hungary

Prof. Joseph Michael
Johannesburg, South Africa

Prof. Ermino Murano
Trieste, Italy

Prof. Virinder Parmar
Delhi, India

Prof. Luc Pieters
Antwerp, Belgium

Prof. Om Prakash
Manhattan, KS, USA

Prof. Peter Proksch
Dusseldorf, Germany

Prof. William Reynolds
Toronto, Canada

Prof. Raffaele Riccio
Salerno, Italy

Prof. Ricardo Rigueira
Santiago de Compostela, Spain

Prof. Satyajit Sarkar
Clermonte, UK

Prof. Monique Simmonds
Richmond, UK

Prof. Valentin Stonik
Vladivostok, Russia

Prof. Hermann Stuppner
Innsbruck, Austria

Prof. Apichart Saksamarn
Bangkok, Thailand

Prof. Hiromitsu Takayama
Chiba, Japan

Prof. Karen Valant-Vetschera
Vienna, Austria

Prof. Peter G. Waterman
Lismore, Australia

Prof. Paul Wender
Stanford, USA

INFORMATION FOR AUTHORS

Full details of how to submit a manuscript for publication in Natural Product Communications are given in Information for Authors on our Web site http://www.naturalproduct.us.

Authors may reproduce/republish portions of their published contribution without seeking permission from NPC, provided that any such republication is accompanied by an acknowledgment (original citation)-Reproduced by permission of Natural Product Communications. Any unauthorized reproduction, transmission or storage may result in either civil or criminal liability.

The publication of each of the articles contained herein is protected by copyright. Except as allowed under national “fair use” laws, copying is not permitted by any means or for any purpose, such as for distribution to any third party (whether by sale, loan, gift, or otherwise); as agent (express or implied) of any third party; for purposes of advertising or promotion; or to create collective or derivative works. Such permission requests, or other inquiries, should be addressed to the Natural Product Inc. (NPI). A photocopy license is available from the NPI for institutional subscribers that need to make multiple copies of single articles for internal study or research purposes.

To Subscribe: Natural Product Communications is a journal published monthly. 2007 subscription price: US$1,395 (Print, ISSN# 1934-578X); US$1,095 (Web edition, ISSN# 1555-9475); US$1,795 (Print + single site online). Orders should be addressed to Subscription Department, Natural Product Communications, Natural Product Inc., 7963 Anderson Park Lane, Westerville, Ohio 43081, USA. Subscriptions are renewed on an annual basis. Claims for nonreceipt of issues will be honored if made within three months of publication of the issue. All issues are dispatched by airmail throughout the world, excluding the USA and Canada.
Natural Variability in Enantiomeric Composition of Bioactive Chiral Terpenoids in the Essential Oil of *Solidago canadensis* L. from Uttarakhand, India*

Chandan S. Chanotiya* and Anju Yadav

Instrumentation and Central Facility, Central Institute of Medicinal and Aromatic Plants, Post CIMAP, Lucknow-226 015, India

chanotiya@gmail.com

Received: September 18th, 2007; Accepted: November 3rd, 2007

The natural variability in the enantiomeric distribution of biologically active chiral terpenoids in *Solidago canadensis* L. essential oil from Kumaon was evaluated by enantioselective capillary GC, capillary GC, and GC-MS. Germacrene D, a sesquiterpene hydrocarbon, was noticed as the major compound, contributing 56.7%, 75.5% and 69.7% to the samples, while other constituents with variable compositions were limonene (0.2 to 12.5%), bornyl acetate (2.1 to 2.9%), δ-elemene (2.4 to 3.2), β-elemene (1.3 to 1.8%), and elemol (1.4 to 2.6%). The enantiomeric excess has been determined for germacrene D with (+)-enantiomer (>41.8% to >47%) dominating over the (-)-enantiomer in all the samples. Furthermore, there has been above 95% enantiomeric excess for (R)-(+)limonene (>95.1% to >99%), whereas moderate to low excess for (1R)-(+)α-pinene (>47.9%), and (1S)-(+)β-pinene (>30.3%) was established. Notably, only (-)-bornyl acetate was found as a single enantiomer with >99% enantiomeric excess. However, for all the identified chiral terpenoids, the enantiomeric distribution varied within only a narrow range in all the samples.

Keywords: *Solidago canadensis* L., Asteraceae, chiral terpenoid, essential oil composition, (+)-germacrene D, enantiomeric excess.

Solidago canadensis L. or goldenrod (family Asteraceae), mostly grown as an ornamental plant, was introduced in the Kumaon hills of India from North America during the British period. The plant is cultivated throughout India and is distributed on hill slopes, up to 1800 m, along road sides, near human settlements and along water courses [1]. *S. canadensis* and *S. gigantea* are widely distributed in most European countries as well. The medicinal raw material, known as Herba Solidaginis, includes *S. canadensis*, *S. gigantea* and *S. virgaurea* [2].

Several research papers have been published on the essential oil compositions of *Solidago* species from many countries other than India. The oil compositions of *S. canadensis*, *S. gigantea*, *S. graminifolia* and *S. virgaurea* have been reported from Poland [3a-3e]. That of micropropagated *S. canadensis* contained α-pinene (59.5%), germacrene D (15.2%) and limonene (9.7%) [3d]. Enantiomeric variations in (-)-germacrene D (21.6 to 23.5%) have been reported in *S. gigantea* [3e]. Overall, the essential oil obtained from *Solidago* species is not only a rich source of enantiomeric germacrene D, but it also possesses significant antibacterial activity [3f] and acts as a good neuron receptor in the moth, *Helicoverpa armigera* [3g].

The odor and specific character of terpenoids are often related to their stereochemistry. Capillary gas chromatography using modified cyclodextrins as stationary phase has proved a reliable technique in the determination of the enantiomeric composition of terpenoids [4a,4b]. Most sesquiterpenes are chiral molecules, but usually only one of the two possible enantiomers is produced in a single species. *S. canadensis* is an exception to this rule, because it contains the sesquiterpene enantiomers, (+)-germacrene D (29a) and (-)-germacrene D (29b) in approximately equal amounts. The responsible two sesquiterpene synthases, viz., (+)-germacrene D...
Table 1: Compositions (in %) of essential oils of Solidago canadensis. Detection: A, RI on Equity-5 capillary column; B, GC/MS; C, co-injection with standards; † tentatively identified (see Experimental Part).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Compounds</th>
<th>RI*</th>
<th>RI*</th>
<th>Solidago canadensis Aerial parts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sample I</td>
</tr>
<tr>
<td>1</td>
<td>α-Pinene</td>
<td>938</td>
<td>1018</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>Camphene</td>
<td>952</td>
<td>1059</td>
<td>0.2</td>
</tr>
<tr>
<td>3</td>
<td>Sabinene</td>
<td>976</td>
<td>1116</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>β-Pinene</td>
<td>980</td>
<td>1104</td>
<td>1.2</td>
</tr>
<tr>
<td>5</td>
<td>β-Myrccene</td>
<td>991</td>
<td>1158</td>
<td>2.8</td>
</tr>
<tr>
<td>6</td>
<td>α-Phellandrene</td>
<td>1007</td>
<td>1161</td>
<td>0.2</td>
</tr>
<tr>
<td>7</td>
<td>α-Terpene</td>
<td>1018</td>
<td>-</td>
<td>t</td>
</tr>
<tr>
<td>8</td>
<td>β-Cyrene</td>
<td>1025</td>
<td>1274</td>
<td>t</td>
</tr>
<tr>
<td>9</td>
<td>Limonene</td>
<td>1031</td>
<td>1191</td>
<td>12.5</td>
</tr>
<tr>
<td>10</td>
<td>Benzene acetaldehyde</td>
<td>1040</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>11</td>
<td>(E)-β-Ocimene</td>
<td>1048</td>
<td>1268</td>
<td>t</td>
</tr>
<tr>
<td>12</td>
<td>γ-Terpene</td>
<td>1059</td>
<td>1247</td>
<td>t</td>
</tr>
<tr>
<td>13</td>
<td>cis-Sabinene hydrate</td>
<td>1069</td>
<td>-</td>
<td>t</td>
</tr>
<tr>
<td>14</td>
<td>Terpinolene</td>
<td>1090</td>
<td>1295</td>
<td>t</td>
</tr>
<tr>
<td>15</td>
<td>Linalool</td>
<td>1099</td>
<td>1546</td>
<td>0.1</td>
</tr>
<tr>
<td>16</td>
<td>Terpinen-4-ol</td>
<td>1178</td>
<td>1585</td>
<td>0.2</td>
</tr>
<tr>
<td>17</td>
<td>α-Terpeneol</td>
<td>1189</td>
<td>1695</td>
<td>t</td>
</tr>
<tr>
<td>18</td>
<td>Bornyl acetate</td>
<td>1286</td>
<td>1557</td>
<td>2.1</td>
</tr>
<tr>
<td>19</td>
<td>δ-Elemene</td>
<td>1339</td>
<td>1573</td>
<td>2.4</td>
</tr>
<tr>
<td>20</td>
<td>α-Copaene</td>
<td>1376</td>
<td>1497</td>
<td>t</td>
</tr>
<tr>
<td>21</td>
<td>β-Bourbonene</td>
<td>1384</td>
<td>1521</td>
<td>t</td>
</tr>
<tr>
<td>22</td>
<td>β-Cubebene</td>
<td>1387</td>
<td>-</td>
<td>t</td>
</tr>
<tr>
<td>23</td>
<td>β-Elemene</td>
<td>1390</td>
<td>1567</td>
<td>1.3</td>
</tr>
<tr>
<td>24</td>
<td>cis-Jasmon</td>
<td>1394</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>25</td>
<td>β-Caryophyllene</td>
<td>1421</td>
<td>1591</td>
<td>0.7</td>
</tr>
<tr>
<td>26</td>
<td>β-Gurjunene</td>
<td>1433</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>27</td>
<td>γ-Elemene</td>
<td>1435</td>
<td>-</td>
<td>0.3</td>
</tr>
<tr>
<td>28</td>
<td>α-Humulene</td>
<td>1454</td>
<td>1644</td>
<td>0.7</td>
</tr>
<tr>
<td>29</td>
<td>Germacrene D</td>
<td>1480</td>
<td>1691</td>
<td>56.7</td>
</tr>
<tr>
<td>30</td>
<td>epi-Cubebol</td>
<td>1496</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>31</td>
<td>α-Murolene</td>
<td>1499</td>
<td>1709</td>
<td>0.3</td>
</tr>
<tr>
<td>32</td>
<td>trans-β-Guaiene†</td>
<td>1502</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>33</td>
<td>β-Bulnesene</td>
<td>1508</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>34</td>
<td>γ-Cadinene</td>
<td>1515</td>
<td>1740</td>
<td>0.2</td>
</tr>
<tr>
<td>35</td>
<td>Cubebol</td>
<td>1515</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>36</td>
<td>δ-Cadinene</td>
<td>1519</td>
<td>1748</td>
<td>0.6</td>
</tr>
<tr>
<td>37</td>
<td>α-Cadinene</td>
<td>1538</td>
<td>1772</td>
<td>t</td>
</tr>
<tr>
<td>38</td>
<td>Elemol</td>
<td>1550</td>
<td>1801</td>
<td>1.4</td>
</tr>
<tr>
<td>39</td>
<td>Germacrene B</td>
<td>1559</td>
<td>-</td>
<td>0.4</td>
</tr>
<tr>
<td>40</td>
<td>Germacrene D-4-ol</td>
<td>1575</td>
<td>-</td>
<td>t</td>
</tr>
<tr>
<td>41</td>
<td>Guaiol†</td>
<td>1594</td>
<td>-</td>
<td>0.1</td>
</tr>
<tr>
<td>42</td>
<td>1-epi-Cubebol</td>
<td>1616</td>
<td>-</td>
<td>0.5</td>
</tr>
<tr>
<td>43</td>
<td>epi-α-Cadinol</td>
<td>1643</td>
<td>2154</td>
<td>0.5</td>
</tr>
<tr>
<td>44</td>
<td>β-Éudesmol</td>
<td>1653</td>
<td>-</td>
<td>0.2</td>
</tr>
<tr>
<td>45</td>
<td>Selin-11-en-4-ol</td>
<td>1653</td>
<td>-</td>
<td>0.6</td>
</tr>
<tr>
<td>Total identified</td>
<td></td>
<td>95.2</td>
<td>94.1</td>
<td>92.3</td>
</tr>
</tbody>
</table>

RI1, retention indices relative to homologous series of n-alkanes (C8-C25) hydrocarbons on Equity-5 capillary column; RI2, retention indices relative to homologous series of n-alkanes (C8-C25) hydrocarbons (Polyscience Corp. Niles IL) on CP-Wax 52 CB capillary column.

Synthase and (−)-germacrene D synthase, have been reported from Solidago canadensis. Furthermore, it was established that both synthases catalyze the formation of enantiomerically pure products [4c, 4d]. No previous work has been reported on the essential oil and enantiomeric composition of Solidago canadensis from India. In the present communication, we report the essential oil composition and enantiomeric differentiation of chiral terpenoids of Solidago canadensis growing in the Kumaon region of India.

The comparative composition of Solidago canadensis oil is depicted in Table 1. Germacrene D (Entry 29) was characterized as the main constituent, but with varied composition 56.7, 75.5, and 69.7%, respectively in the three oil samples. Other significant compounds were limonene (Entry 9, 0.2 to 12.5%), α-pinene (Entry 1, t to 5%), β-myrcene (Entry 5, t to 2.8%), sabinene (Entry 3, 0.2 to 2.4%), and bornyl acetate (Entry 18, 2.1 to 2.9%). Apart from the above, other sesquiterpene hydrocarbons, such as δ-elemene, β-elemene, β-caryophyllene, α-humulene, and δ-cadinene and oxygenated sesquiterpenes, including elemol, have also been detected in significant percentages. Similarly, among the oxygenated monoterpenes, bornyl acetate (Entry 18), terpinen-4-ol (Entry 16), and linalool (Entry 15) have been noticed.
Table 2: Enantiomeric excess (in %) of predominant enantiomer of chiral terpenes in *Solidago canadensis* essential oil by enantioselective capillary gas chromatography (eGC) using permethylated β-cyclodextrin as stationary phase (see Experimental).

<table>
<thead>
<tr>
<th>Entry</th>
<th>Enantiomers*</th>
<th>Solidago canadensis Aerial parts (%)</th>
<th>Sample I</th>
<th>Sample II</th>
<th>Sample III</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>eGC-FID</td>
<td>eGC-FID</td>
<td>eGC-FID</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>enantiomeric excess</td>
<td>enantiomeric excess</td>
<td>enantiomeric excess</td>
</tr>
</tbody>
</table>

(1a) (1S)-α-pinene 1.2
(1b) (1R)-α-pinene 3.4
(1a) (1R)-β-pinene 0.4
(1b) (1S)-β-pinene 0.7
(3a) (±)-β-myrcene 2.5
(3a) (±)-sabinene 1.8
(5a) (S)-(+) limonene 0.3
(9a) (R)-(+) limonene 12.7
(18a) (-)- bornyl acetate 2.4
(29a) (+)-germacrene D 37.3
(29b) (-)-germacrene D 15.3

*Compounds are listed in elution order from SUPELCO β-DEX 110 capillary column, enantiomeric excess (in %) calculated only for predominant enantiomer.

Enantioselective capillary gas chromatography of all three oils showed variation in terms of enantiomeric ratios and enantiomeric excess among the different enantiomeric pairs. The enantiomeric distributions have been reported in terms of their enantiomeric excess (ee) with respect to the predominant isomers (Table 2). Among monoterpenes, only limonene showed high optical purity, the (+)-enantiomer prevailing (more than 97%, i.e., 95% ee) in sample I and 99% ee in sample III, while sample II did not contain any one of them, even in traces. α-Pinene showed optical purity (74%) for the (1R)-(+) enantiomer, which is equivalent to 47.9% in terms of ee, and (1S)-(−)-β-pinene was found to be with a lowest optical purity (30.3%) in sample I and was not observed in the other samples. In contrast to these pairs, (-)-bornyl acetate was an exception, as it was noticed as a single enantiomer with ee >99% in all three samples, but the presence of a small proportion of (+)-bornyl acetate could not be excluded. The (+)- and (-)-germacrene D enantiomers appear with 70.9 and 29.1% optical purity, which corresponds to 41.8% enantiomeric excess for the (+)-enantiomer in sample I. On the other hand, in the other two samples, ee corresponding to >47% and >45% have been recorded for the (+)-enantiomer. However, both enantiomers have been reported previously in equal amounts from *S. canadensis*.

Interestingly, these reports do not agree with our results. Therefore, the enantiomeric ratios for our oil samples are new. Furthermore, the enantiomeric compositions revealed four pairs of bioactive chiral terpenoids, viz., (1S)-(−)-α-pinene (*Entry 1a*), and (1R)-(−)-α-pinene (*Entry 1b*), (1R)-(−)-β-pinene (*Entry 4a*), and (1S)-(−)-β-pinene (*Entry 4b*), (S)-(−)-limonene (*Entry 9a*), and (R)-(−)-limonene (*Entry 9b*), and (+)-germacrene D (*Entry 29a*), and (-)-germacrene D (*Entry 29b*) in *S. canadensis*. Only (-)-bornyl acetate (*Entry 18a*) was observed as a single enantiomer. However, compositional variations have been observed in all *S. canadensis* oil samples. GC and GC-MS results showed high percentages of germacrene D (56.7 to 75.5%), along with limonene (0.2 to 12.5%) in all the oil samples. An earlier report revealed a high α-pinene (59.5%) content, besides germacrene D (19.8%) and limonene (9.7%) [3d], while another reported curlone (23.5%), germacrene D (19.8%), α-pinene (14.7%), β-sesquiphellandrene (10.4%), limonene (9.3%), and myrcene (4.2%) [3a]. Notably, these have previously been erroneously identified as γ-cadinene and δ-cadinene [5]. However, the absence of curlone and β-sesquiphellandrene makes the essential oil composition entirely different.

In conclusion, enantioselective capillary GC is an efficient method for stereochemical assignments of the chiral terpenoids present in essential oils. *S. canadensis* growing wild in the Kumaon region contained (+/-)-germacrene D in variable enantiomeric ratios, with an overall predominance of the (+)-form. Therefore, the enantiomeric ratio for the major enantiomer appears to be independent of the geographical origin of the plant and thus, any variation in the characteristic value may be regarded as adulteration. These results also support the usefulness of the enantiomeric ratios and enantiomeric excess of bioactive chiral terpenes in authenticity studies of the essential oil.

Experimental

General: A PerkinElmer Autosystem XL gas chromatograph was used, fitted with an EQUITY–5 column (60 m x 0.32 mm, film thickness 0.25 μm, SUPELCO). The column temperature ranged from
70-250°C, programmed at 3°C/min, with a final hold time of 2 min., using H2 as carrier gas at 10 psi constant pressure, a split ratio of 1:30, an injection size of 0.03 µL neat, and injector and detector (FID) temperatures of 250°C and 280°C, respectively. The enantioselective capillary GC analysis was conducted on a Varian CP-3800 GC fitted with a β-DEX 110 fused silica capillary column (30 m x 0.25 mm x 0.25 µm film thickness, SUPLECO). The column temperature of 60°C -180°C was programmed at 266°C/min with an initial hold time of 2 min., then 180°C-220°C at a rate of 3.5°C /min, with a final hold time of 7 min. using H2 as carrier gas at 10 psi constant pressure, split ratio 1:100, an injection size 0.06 µL neat, and injector and detector (FID) temperatures of 220°C and 250°C, respectively. GC/MS utilized a PerkinElmer Autosystem XL GC interfaced with a Turbomass Quadrupole Mass spectrometer fitted with an EQUITY–5 (SUPELCO) fused silica capillary column (60 m x 0.32 mm; 0.25 µm film coating). The oven temperature program was the same as that used in GC, while the injector, transfer line and sources temperatures were 250°C. The injection size was 0.03 µL neat, and a split ratio of 1:30 was used with He as carrier gas at 10 psi constant pressure. MS were taken at 70 eV with a mass range of m/z 40-450. Characterization was achieved on the basis of retention time, Kovats Index, relative retention index using a homologous series of n-alkanes (C9-C25 hydrocarbons, Polyscience Corp. Niles IL), coinjection with enantiomeric standards (Sigma Aldrich), mass spectra library search (NIST and Wiley), and by comparing with the mass spectral literature data [6a]. The relative amounts of individual components were calculated based on GC peak areas without using correction factors.

Plant material: The aerial parts of three Solidago canadensis plants were collected in June 2007 at the young stage of development from three different locations in Bhimtal (1500 m), Kumaon, India. The plant identifications (voucher specimens CSC 62301 to 62303) were confirmed by Prof. YPS Pangtey, and deposited in the Botany Department, Kumaun University, Nainital, India.

Extraction and isolation of oils: The aerial parts of fresh plants of all the three samples were subjected to hydrodistillation in a Clevenger type apparatus (0.2 kg each) for 3 h [6b]. The distillate was saturated with NaCl and the oil was extracted with n-hexane and dichloromethane. The solvent phase was then dried over anhydrous Na2SO4 and then the solvent distilled off in a thin film rotary vacuum evaporator at 35°C. The oil samples were stored at -20°C until analyzed. The oil yields of sample I to III were 0.35%, 0.32% and 0.30%, respectively.

Acknowledgements - The authors are grateful to the Director, CIMAP for support and encouragement. CSC thanks Prof. YPS Pangtey for plant identification.

References

New Acylated Flavonol Diglycosides of *Cynanchum acutum*
Mona A. Mohamed, Wafaa S. Ahamed, Mortada M. El-Said and Heiko Hayen 193

Phenolic Constituents of *Platanus orientalis* L. Leaves
Taha S. El-Alfy, Hamida M.A. El-Gohary, Nadia M. Sokkar, Amani A. Sleem and Dalia A. Al-Mahdy 199

Strepsiamide A-C, New Ceramides from the Marine Sponge *Strepsichordaia lendenfeldi*
Sabrin R. M. Ibrahim, Gamal A. Mohamed, Ehab S. Elkhayat, Yaser G. Gouda and Peter Proksch 205

Free Radical Scavenging and Cytoprotective Activity of *Salacia euphlebia* Merr.
Sanan Subhadhirasakul, Niwat Keawpradub, Charuporn Promwong and Supreeya Yuenyongswad 211

Antialactone: A New γ-Lactone from *Antiaris africana*, and its Absolute Configuration Determined

Subereaphenol A, a new Cytotoxic and Antimicrobial Dibrominated Phenol from the Red Sea Sponge *Suberea mollis*
Lamiaa A. Shaala, Sherief I. Khalifa, Mostafa K. Mesbah, Rob W. M. van Soest and Diaa T. A. Youssef 219

A New Ferulic Ester and Related Compounds from *Bombax malabaricum* DC.
Pahup Singh, Durga K. Mewara and Mahesh C. Sharma 223

Role of Turmeric in Ultraviolet Induced Genotoxicity in a Bacterial System
Arijit Pal, Mita Ghosh and Arun Kumar Pal 227

Excited-State pKa Values of Curcumin
Qian Zhao, De-Xin Kong and Hong-Yu Zhang 229

Antibacterial and Antifungal Activities of Some Phenolic Metabolites Isolated from the Lichenized Ascomycete *Ramalina lacera*
Lumír O Hanuš, Marina Temina and Valery M Dembitsky 233

Phenolic Constituents of *Hypericum* Flowers
Carolina Nör, Ana Paula Machado Bernardi, Juliana Schulte Haas, Jan Schripsema, Sandra Beatriz Rech and Gilsane Lino von Poser 237

Seasonal Variation of Hypericin and Pseudohypericin Contents in *Hypericum scabrum* L. Growing Wild in Turkey
Ali Kemal Ayan, Cüneyt Çırak and Kerim Güney 241

Molluscidal Polyphenols from Species of *Fucaceae*
Asmita V. Patel, David C. Wright, Maricela Adrian Romero, Gerald Blunden and Michael D. Guiry 245

Anti-diabetic Activity of Triphala Fruit Extracts, Individually and in Combination, in a Rat Model of Insulin Resistance
Venkateshan S. Prativadibhayankaram, Samir Malhotra, Promila Pandhi and Anrtpal Singh 251

Biotransformation of Mefenamic Acid by Cell Suspension Cultures of *Solanum mamasosum*
Suzana Surodjo, Angela A. Salim, Sucici, Achmad Syahrami, Gunawan Indrayanto and Mary J. Garson 257

Natural Variability in Enantiomeric Composition of Bioactive Chiral Terpenoids in the Essential Oil of *Solidago canadensis* L. from Uttarakhand, India
Chandan S. Chanotiya and Anju Yadav 263

Germacrone Dominates the Leaf Oil of *Siparuna grandiflora* from Monteverde, Costa Rica
William N. Setzer, Brittany R. Agius, Tameka M. Walker, Debra M. Moriarity and William A. Haber 267

Leaf Oil Composition of *Piper aduncum* subsp. *ossanum* (C. CD.) Saralegui from Cuba
Orlando Abreu and Jorge A. Pino 271

Volatile Constituents from the Leaves of *Phyllanthus salviaefolius* H. B. K. from the Venezuelan Andes
Silvana Villarreal, Luis B. Rojas, Alfredo Usubillaga, Irma Ramirez and Mariana Solórzano 275

Synergistic Antifungal Activities of Thymol Analogues with Propolis
Chi-Pien Chen and Ai-Yu Shen 279

Review /Account
Argan oil, Functional Food, and the Sustainable Development of the Argan Forest
Zoubida Charrouf and Dominique Guillaume 283

Chemical Constituents of Selected Japanese and New Zealand Liverworts
Yoshinori Asakawa, Masao Toyoda, Fumihiro Nagashima and Toshihiro Hashimoto 289
Natural Product Communications
2008
Volume 3, Number 2

Contents

<table>
<thead>
<tr>
<th>Original paper</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>New cis-Chrysanthenyl Esters from Eryngium planum L.</td>
<td>113</td>
</tr>
<tr>
<td>Emilia Korbel, Ange Bighelli, Anna Kurowska, Danuta Kalemba and Joseph Casanova</td>
<td></td>
</tr>
<tr>
<td>Secondary Metabolites from Eremostachys laciniata</td>
<td>117</td>
</tr>
<tr>
<td>İlhan Çalış, Ayşegül Güvenç, Metin Armağan, Mehmet Koyuncu, Charlotte H. Gottfredsen and Sören R. Jensen</td>
<td></td>
</tr>
<tr>
<td>A Novel Iridoid from Plumeria obtusa</td>
<td>125</td>
</tr>
<tr>
<td>Firdous Imran Ali, Imran Ali Hashmi and Bina Shaheen Siddiqui</td>
<td></td>
</tr>
<tr>
<td>Terpenoids from Neolitsea dealbata</td>
<td>129</td>
</tr>
<tr>
<td>Xiujun Wu, Bernhard Vogler, Betsy R. Jackes and William N. Setzer</td>
<td></td>
</tr>
<tr>
<td>Volatile Components from Selected Mexican, Ecuadorian, Greek, German and Japanese Liverworts*</td>
<td>133</td>
</tr>
<tr>
<td>Agnieszka Ludwiczuk, Fumihiro Nagashima, Rob S. Gradstein and Yoshinori Asakawa</td>
<td></td>
</tr>
<tr>
<td>New ent–Kaurane type Diterpene Glycoside, Pulicaroside-B, from Pulicaria undulata L.*</td>
<td>141</td>
</tr>
<tr>
<td>Nasir Rasool, Viqar Uddin Ahmad, Naseem Shahzad, Muhammad A. Rashid, Aman Ullah, Zahid Hassan, Muhammad Zubair and Rasool Bakhsh Tareen</td>
<td></td>
</tr>
<tr>
<td>Anti-babesial Quassinoids from the Fruits of Brueca javanica</td>
<td>145</td>
</tr>
<tr>
<td>Ahmed Elkhateeb, Masahiro Yamasaki, Yoshimitsu Maede, Ken Katakura, Kنسuke Nabet and hideyuki Matsuura</td>
<td></td>
</tr>
<tr>
<td>Triterpenoids and Alkaloids from the Roots of Peganum nigellastrum</td>
<td>149</td>
</tr>
<tr>
<td>Zhongze Ma, Yoshiio Hano, Feng Qiu, Gang Shao, Yingjie Chen and Taro Nomura</td>
<td></td>
</tr>
<tr>
<td>Saikosaponins from Bupleurum chinense and Inhibition of HBV DNA Replication Activity*</td>
<td>155</td>
</tr>
<tr>
<td>Feng Yin, Ruixiang Pan, Ronming Chen and Lihong Hu</td>
<td></td>
</tr>
<tr>
<td>Brauhenoside A and B: Saponins from Stocksia brauhica Benth.*</td>
<td>159</td>
</tr>
<tr>
<td>viqar Uddin Ahmad, Sadia Bader, Saima Arshad, Faryal Vali Mohammad, Amir Ahmed, Shazia Iqbal, Saleha Suleman Khan and Rasool Bakhsh Tareen</td>
<td></td>
</tr>
<tr>
<td>Saponins from Fresh Fruits of Randia siamensis (Lour) Roem. & Schult. (Rubiaceae)*</td>
<td>163</td>
</tr>
<tr>
<td>Rapheeporn Khwanchuea, Emerson Ferreira Queiroz, Andrew Marston, Chaweewan Jansakul and Kurt Hostettmann</td>
<td></td>
</tr>
<tr>
<td>New Alkaloid from Aspidosperma polynereon Roots*</td>
<td>171</td>
</tr>
<tr>
<td>Tatiane Alves dos Santos, Dalva Trevisan Ferreira, Jurandir Pereira Pinto, Milton Facchine and Raimundo Braz-Filho</td>
<td></td>
</tr>
<tr>
<td>Acanthomine A, a new Pyrimidine-β-Carboline Alkaloid from the Sponge Acanthostrongylophora inescens</td>
<td>175</td>
</tr>
<tr>
<td>Sabrin R. M. Ibrahim, RuAngelie Ebel, Rainer Ebel and Peter Proksch</td>
<td></td>
</tr>
<tr>
<td>Phytochemical and Microscopic Characterization of the Caribbean Aphrodisiac Bois Bandé: Two New Norneolignans*</td>
<td>179</td>
</tr>
<tr>
<td>Ingrid Werner, Pavel Mucaji, Armin Presser, Christa Kletter and Sabine Glash</td>
<td></td>
</tr>
<tr>
<td>3-Acetoxy-7-methoxyflavone, a Novel Flavonoid from the Anxiolytic Extract of Salvia elegans (Lamiaceae)*</td>
<td>185</td>
</tr>
<tr>
<td>Silvia Marquina, Yolanda Garcia, Laura Alvarez and Jaime Tortoriello</td>
<td></td>
</tr>
<tr>
<td>Struthiolanone: A Flavanone-Resveratrol Adduct from Struthiola argentea</td>
<td>189</td>
</tr>
<tr>
<td>Sloan Ayers, Deborah L. Zink, Robert Brand, Seef Pretorius, Dennis Stevenson and Sheo B. Singh</td>
<td></td>
</tr>
</tbody>
</table>

Continued inside back cover